Search results for "shape optimization"
showing 10 items of 44 documents
Shape optimization of elasto-plastic bodies under plane strains: Sensitivity analysis and numerical implementation
1992
Optimal shape design problems for an elastic body made from physically nonlinear material are presented. Sensitivity analysis is done by differentiating the discrete equations of equilibrium. Numerical examples are included.
On Fixed Point (Trial) Methods for Free Boundary Problems
1992
In this note we consider the trial methods for solving steady state free boundary problems. For two test examples (electrochemical machining and continuous casting) we discuss the convergence of a fixed point method. Moreover, using the techniques of shape optimization we introduce a modification of the method, which gives us superlinear convergence rate. This is also confirmed numerically.
Sur les problèmes d'optimisation structurelle
2000
We discuss existence theorems for shape optimization and material distribution problems. The conditions that we impose on the unknown sets are continuity of the boundary, respectively a certain measurability hypothesis. peerReviewed
Fixed domain approaches in shape optimization problems
2012
This work is a review of results in the approximation of optimal design problems, defined in variable/unknown domains, based on associated optimization problems defined in a fixed ?hold-all? domain, including the family of all admissible open sets. The literature in this respect is very rich and we concentrate on three main approaches: penalization?regularization, finite element discretization on a fixed grid, controllability and control properties of elliptic systems. Comparison with other fixed domain approaches or, in general, with other methods in shape optimization is performed as well and several numerical examples are included.
Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions
2009
Fixed domain methods have well-known advantages in the solution of variable domain problems including inverse interface problems. This paper examines two new control approaches to optimal design problems governed by general elliptic boundary value problems with Dirichlet boundary conditions. Numerical experiments are also included peerReviewed
A Fixed Domain Approach in Shape Optimization Problems with Neumann Boundary Conditions
2008
Fixed domain methods have well-known advantages in the solution of variable domain problems, but are mainly applied in the case of Dirichlet boundary conditions. This paper examines a way to extend this class of methods to the more difficult case of Neumann boundary conditions.
A boundary controllability approach in optimal shape design problems
2005
We indicate a formulation of optimal shape design problems as boundary control problems, based on some approximate controllability-type results. Numerical examples and a comparison with the standard method are included.
Remark on a nonlocal isoperimetric problem
2017
Abstract We consider isoperimetric problem with a nonlocal repulsive term given by the Newtonian potential. We prove that regular critical sets of the functional are analytic. This optimal regularity holds also for critical sets of the Ohta–Kawasaki functional. We also prove that when the strength of the nonlocal part is small the ball is the only possible stable critical set.
Shape optimization for Stokes problem with threshold slip boundary conditions
2017
This paper deals with shape optimization of systems governed by the Stokes flow with threshold slip boundary conditions. The stability of solutions to the state problem with respect to a class of domains is studied. For computational purposes the slip term and impermeability condition are handled by a regularization. To get a finite dimensional optimization problem, the optimized part of the boundary is described by B´ezier polynomials. Numerical examples illustrate the computational efficiency. peerReviewed
Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms
1999
SUMMARY A multiobjective multidisciplinary design optimization (MDO) of two-dimensional airfoil is presented. In this paper, an approximation for the Pareto set of optimal solutions is obtained by using a genetic algorithm (GA). The first objective function is the drag coefficient. As a constraint it is required that the lift coefficient is above a given value. The CFD analysis solver is based on the finite volume discretization of the inviscid Euler equations. The second objective function is equivalent to the integral of the transverse magnetic radar cross section (RCS) over a given sector. The computational electromagnetics (CEM) wave field analysis requires the solution of a two-dimensi…